Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cancer Immunol Immunother ; 73(1): 19, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240863

RESUMO

BACKGROUND: GD2-directed immunotherapy is highly effective in the treatment of high-risk neuroblastoma (NB), and might be an interesting target also in other high-risk tumors. METHODS: The German-Austrian Retinoblastoma Registry, Essen, was searched for patients, who were treated with anti-GD2 monoclonal antibody (mAb) dinutuximab beta (Db) in order to evaluate toxicity, response and outcome in these patients. Additionally, we evaluated anti-GD2 antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in retinoblastoma cell lines in vitro. Furthermore, in vitro cytotoxicity assays directed against B7-H3 (CD276), a new identified potential target in RB, were performed. RESULTS: We identified four patients with relapsed stage IV retinoblastoma, who were treated with Db following autologous stem cell transplantation (ASCT). Two out of two evaluable patients with detectable tumors responded to immunotherapy. One of these and another patient who received immunotherapy without residual disease relapsed 10 and 12 months after start of Db. The other patients remained in remission until last follow-up 26 and 45 months, respectively. In vitro, significant lysis of RB cell lines by ADCC and CDC with samples from patients and healthy donors and anti-GD2 and anti-CD276-mAbs were demonstrated. CONCLUSION: Anti-GD2-directed immunotherapy represents an additional therapeutic option in high-risk metastasized RB. Moreover, CD276 is another target of interest.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias da Retina , Retinoblastoma , Humanos , Retinoblastoma/terapia , Transplante Autólogo , Recidiva Local de Neoplasia , Imunoterapia , Gangliosídeos , Antígenos B7
2.
Br J Haematol ; 204(2): 595-605, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37945316

RESUMO

Juvenile myelomonocytic leukaemia (JMML) is characterized by gene variants that deregulate the RAS signalling pathway. Children with neurofibromatosis type 1 (NF-1) carry a defective NF1 allele in the germline and are predisposed to JMML, which presumably requires somatic inactivation of the NF1 wild-type allele. Here we examined the two-hit concept in leukaemic cells of 25 patients with JMML and NF-1. Ten patients with JMML/NF-1 exhibited a NF1 loss-of-function variant in combination with uniparental disomy of the 17q arm. Five had NF1 microdeletions combined with a pathogenic NF1 variant and nine carried two compound-heterozygous NF1 variants. We also examined 16 patients without clinical signs of NF-1 and no variation in the JMML-associated driver genes PTPN11, KRAS, NRAS or CBL (JMML-5neg) and identified eight patients with NF1 variants. Three patients had microdeletions combined with hemizygous NF1 variants, three had compound-heterozygous NF1 variants and two had heterozygous NF1 variants. In addition, we found a high incidence of secondary ASXL1 and/or SETBP1 variants in both groups. We conclude that the clinical diagnosis of JMML/NF-1 reliably indicates a NF1-driven JMML subtype, and that careful NF1 analysis should be included in the genetic workup of JMML even in the absence of clinical evidence of NF-1.


Assuntos
Leucemia Mielomonocítica Juvenil , Neurofibromatose 1 , Criança , Humanos , Leucemia Mielomonocítica Juvenil/genética , Neurofibromatose 1/genética , Mutação , Transdução de Sinais , Genes Supressores de Tumor
3.
Leukemia ; 38(1): 136-148, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37945692

RESUMO

Juvenile myelomonocytic leukemia (JMML) is an aggressive hematopoietic disorder of infancy and early childhood driven by constitutively active RAS signaling and characterized by abnormal proliferation of the granulocytic-monocytic blood cell lineage. Most JMML patients require hematopoietic stem cell transplantation for cure, but the risk of relapse is high for some JMML subtypes. Azacitidine was shown to effectively reduce leukemic burden in a subset of JMML patients. However, variable response rates to azacitidine and the risk of drug resistance highlight the need for novel therapeutic approaches. Since RAS signaling is known to interfere with the intrinsic apoptosis pathway, we combined various BH3 mimetic drugs with azacitidine in our previously established patient-derived xenograft model. We demonstrate that JMML cells require both MCL-1 and BCL-XL for survival, and that these proteins can be effectively targeted by azacitidine and BH3 mimetic combination treatment. In vivo azacitidine acts via downregulation of antiapoptotic MCL-1 and upregulation of proapoptotic BH3-only. The combination of azacitidine with BCL-XL inhibition was superior to BCL-2 inhibition in eliminating JMML cells. Our findings emphasize the need to develop clinically applicable MCL-1 or BCL-XL inhibitors in order to enable novel combination therapies in JMML refractory to standard therapy.


Assuntos
Azacitidina , Leucemia Mielomonocítica Juvenil , Humanos , Pré-Escolar , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Apoptose , Linhagem Celular Tumoral
4.
Cancers (Basel) ; 15(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958378

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a deadly pediatric leukemia driven by RAS pathway mutations, of which >35% are gain-of-function in PTPN11. Although DNA hypermethylation portends severe clinical phenotypes, the landscape of histone modifications and chromatin profiles in JMML patient cells have not been explored. Using global mass cytometry, Epigenetic Time of Flight (EpiTOF), we analyzed hematopoietic stem and progenitor cells (HSPCs) from five JMML patients with PTPN11 mutations. These data revealed statistically significant changes in histone methylation, phosphorylation, and acetylation marks that were unique to JMML HSPCs when compared with healthy controls. Consistent with these data, assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis revealed significant alterations in chromatin profiles at loci encoding post-translational modification enzymes, strongly suggesting their mis-regulated expression. Collectively, this study reveals histone modification pathways as an additional epigenetic abnormality in JMML patient HSPCs, thereby uncovering a new family of potential druggable targets for the treatment of JMML.

9.
Front Pediatr ; 10: 935951, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967575

RESUMO

CBL syndrome is a Noonan-like RASopathy with heterogeneous clinical phenotype and predisposition to juvenile myelomonocytic leukemia (JMML). Here we describe two patients with identical germline CBL mutation and clinical and immune-hematological overlapping features with autoimmune lymphoproliferative syndrome (ALPS) and B-cell expansion with NF-κB and T-cell anergy (BENTA) syndrome. Increased immature/transitional B cells can be depicted in CBL syndrome, ALPS, and BENTA. Nonetheless, our patients here described showed peculiar B-cell phenotype due to increased immature/transitional CD34+ B cells. This feature differentiates CBL syndrome from BENTA, pointing toward an abnormal proliferation of B-cell early precursors.

11.
Epigenetics ; 17(6): 612-624, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34159881

RESUMO

The stage and molecular pathology-dependent prognosis of breast cancer, the limited treatment options for triple-negative carcinomas, as well as the development of resistance to therapies illustrate the need for improved early diagnosis and the development of new therapeutic approaches. Increasing data suggests that some answers to these challenges could be found in the area of epigenetics. In this study, we focus on the current research of the epigenetics of breast cancer, especially on the potential of epigenetics for clinical application in diagnostics, risk stratification and therapy. The differential DNA methylation status of specific gene regions has been used in the past to differentiate breast cancer cells from normal tissue. New technologies as detection of circulating nucleic acids including microRNAs to early detect breast cancer are emerging. Pattern of DNA methylation and expression of histone-modifying enzymes have been successfully used for risk stratification. However, all these epigenetic biomarkers should be validated in larger clinical studies. Recent preclinical and clinical studies show a therapeutic benefit of epigenetically active drugs for breast cancer entities that are still difficult to treat (triple negative, UICC stage IV). Remarkably, epigenetic therapies combined with chemotherapies or hormone-based therapies represent the most promising strategy. At the current stage, the integration of epigenetic substances into established breast cancer therapy protocols seems to hold the greatest potential for a clinical application of epigenetic research.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Feminino , Humanos , Medição de Risco
13.
Nat Med ; 27(10): 1806-1817, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34621053

RESUMO

Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.


Assuntos
Evolução Clonal/genética , Hematopoiese Clonal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndromes Mielodisplásicas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Células da Medula Óssea/metabolismo , Criança , Pré-Escolar , Feminino , Fator de Transcrição GATA2/genética , Mutação em Linhagem Germinativa/genética , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Síndromes Mielodisplásicas/patologia , Análise de Célula Única
14.
Cells ; 10(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34571984

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a malignant myeloproliferative disorder arising in infants and young children. The origin of this neoplasm is attributed to an early deregulation of the Ras signaling pathway in multipotent hematopoietic stem/progenitor cells. Since JMML is notoriously refractory to conventional cytostatic therapy, allogeneic hematopoietic stem cell transplantation remains the mainstay of curative therapy for most cases. However, alternative therapeutic approaches with small epigenetic molecules have recently entered the stage and show surprising efficacy at least in specific subsets of patients. Hence, the establishment of preclinical models to test novel agents is a priority. Induced pluripotent stem cells (IPSCs) offer an opportunity to imitate JMML ex vivo, after attempts to generate immortalized cell lines from primary JMML material have largely failed in the past. Several research groups have previously generated patient-derived JMML IPSCs and successfully differentiated these into myeloid cells with extensive phenotypic similarities to primary JMML cells. With infinite self-renewal and the capability to differentiate into multiple cell types, JMML IPSCs are a promising resource to advance the development of treatment modalities targeting specific vulnerabilities. This review discusses current reprogramming techniques for JMML stem/progenitor cells, related clinical applications, and the challenges involved.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Leucemia Mielomonocítica Juvenil/patologia , Animais , Diferenciação Celular/fisiologia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Transdução de Sinais/fisiologia
15.
Blood Adv ; 5(14): 2901-2908, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34297046

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative therapy for most children with juvenile myelomonocytic leukemia (JMML). Novel therapies controlling the disorder prior to HSCT are needed. We conducted a phase 2, multicenter, open-label study to evaluate the safety and antileukemic activity of azacitidine monotherapy prior to HSCT in newly diagnosed JMML patients. Eighteen patients enrolled from September 2015 to November 2017 were treated with azacitidine (75 mg/m2) administered IV once daily on days 1 to 7 of a 28-day cycle. The primary end point was the number of patients with clinical complete remission (cCR) or clinical partial remission (cPR) after 3 cycles of therapy. Pharmacokinetics, genome-wide DNA-methylation levels, and variant allele frequencies of leukemia-specific index mutations were also analyzed. Sixteen patients completed 3 cycles and 5 patients completed 6 cycles. After 3 cycles, 11 patients (61%) were in cPR and 7 (39%) had progressive disease. Six of 16 patients (38%) who needed platelet transfusions were transfusion-free after 3 cycles. All 7 patients with intermediate- or low-methylation signatures in genome-wide DNA-methylation studies achieved cPR. Seventeen patients received HSCT; 14 (82%) were leukemia-free at a median follow-up of 23.8 months (range, 7.0-39.3 months) after HSCT. Azacitidine was well tolerated and plasma concentration--time profiles were similar to observed profiles in adults. In conclusion, azacitidine monotherapy is a suitable option for children with newly diagnosed JMML. Although long-term safety and efficacy remain to be fully elucidated in this population, these data demonstrate that azacitidine provides valuable clinical benefit to JMML patients prior to HSCT. This trial was registered at www.clinicaltrials.gov as #NCT02447666.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mielomonocítica Juvenil , Adulto , Azacitidina/efeitos adversos , Criança , Metilação de DNA , Humanos , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Mutação
16.
J Clin Med ; 10(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34300250

RESUMO

Juvenile myelomonocytic leukemia (JMML) is a rare pediatric leukemia characterized by mutations in five canonical RAS pathway genes. The diagnosis is made by typical clinical and hematological findings associated with a compatible mutation. Although this is sufficient for clinical decision-making in most JMML cases, more in-depth analysis can include DNA methylation class and panel sequencing analysis for secondary mutations. NRAS-initiated JMML is heterogeneous and adequate management ranges from watchful waiting to allogeneic hematopoietic stem cell transplantation (HSCT). Upfront azacitidine in KRAS patients can achieve long-term remissions without HSCT; if HSCT is required, a less toxic preparative regimen is recommended. Germline CBL patients often experience spontaneous resolution of the leukemia or exhibit stable mixed chimerism after HSCT. JMML driven by PTPN11 or NF1 is often rapidly progressive, requires swift HSCT and may benefit from pretransplant therapy with azacitidine. Because graft-versus-leukemia alloimmunity is central to cure high risk patients, the immunosuppressive regimen should be discontinued early after HSCT.

17.
Leukemia ; 35(9): 2650-2657, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33714975

RESUMO

Long-term treatment with 6-thioguanine (6-TG) for pediatric acute lymphoblastic leukemia (ALL) is associated with high rates of hepatic sinusoidal obstruction syndrome (SOS). Nevertheless, current treatment continues to use short-term applications of 6-TG with only sparse information on toxicity. 6-TG is metabolized by thiopurine methyltransferase (TPMT) which underlies clinically relevant genetic polymorphism. We analyzed the association between hepatic SOS reported as a serious adverse event (SAE) and short-term 6-TG application in 3983 pediatric ALL patients treated on trial AIEOP-BFM ALL 2000 (derivation cohort) and defined the role of TPMT genotype in this relationship. We identified 17 patients (0.43%) with hepatic SOS, 13 of which with short-term exposure to 6-TG (P < 0.0001). Eight of the 13 patients were heterozygous for low-activity TPMT variants, resulting in a 22.4-fold (95% confidence interval 7.1-70.7; P ≤ 0.0001) increased risk of hepatic SOS for heterozygotes in comparison to TPMT wild-type patients. Results were supported by independent replication analysis. All patients with hepatic SOS after short-term 6-TG recovered and did not demonstrate residual symptoms. Thus, hepatic SOS is associated with short-term exposure to 6-TG during treatment of pediatric ALL and SOS risk is increased for patients with low-activity TPMT genotypes.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Hepatopatia Veno-Oclusiva/prevenção & controle , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Tioguanina/administração & dosagem , Adolescente , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico , Fatores de Tempo
18.
JAMA ; 325(9): 843-854, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33651091

RESUMO

Importance: Blinatumomab is a CD3/CD19-directed bispecific T-cell engager molecule with efficacy in children with relapsed or refractory B-cell acute lymphoblastic leukemia (B-ALL). Objective: To evaluate event-free survival in children with high-risk first-relapse B-ALL after a third consolidation course with blinatumomab vs consolidation chemotherapy before allogeneic hematopoietic stem cell transplant. Design, Setting, and Participants: In this randomized phase 3 clinical trial, patients were enrolled November 2015 to July 2019 (data cutoff, July 17, 2019). Investigators at 47 centers in 13 countries enrolled children older than 28 days and younger than 18 years with high-risk first-relapse B-ALL in morphologic complete remission (M1 marrow, <5% blasts) or with M2 marrow (blasts ≥5% and <25%) at randomization. Intervention: Patients were randomized to receive 1 cycle of blinatumomab (n = 54; 15 µg/m2/d for 4 weeks, continuous intravenous infusion) or chemotherapy (n = 54) for the third consolidation. Main Outcomes and Measures: The primary end point was event-free survival (events: relapse, death, second malignancy, or failure to achieve complete remission). The key secondary efficacy end point was overall survival. Other secondary end points included minimal residual disease remission and incidence of adverse events. Results: A total of 108 patients were randomized (median age, 5.0 years [interquartile range {IQR}, 4.0-10.5]; 51.9% girls; 97.2% M1 marrow) and all patients were included in the analysis. Enrollment was terminated early for benefit of blinatumomab in accordance with a prespecified stopping rule. After a median of 22.4 months of follow-up (IQR, 8.1-34.2), the incidence of events in the blinatumomab vs consolidation chemotherapy groups was 31% vs 57% (log-rank P < .001; hazard ratio [HR], 0.33 [95% CI, 0.18-0.61]). Deaths occurred in 8 patients (14.8%) in the blinatumomab group and 16 (29.6%) in the consolidation chemotherapy group. The overall survival HR was 0.43 (95% CI, 0.18-1.01). Minimal residual disease remission was observed in more patients in the blinatumomab vs consolidation chemotherapy group (90% [44/49] vs 54% [26/48]; difference, 35.6% [95% CI, 15.6%-52.5%]). No fatal adverse events were reported. In the blinatumomab vs consolidation chemotherapy group, the incidence of serious adverse events was 24.1% vs 43.1%, respectively, and the incidence of adverse events greater than or equal to grade 3 was 57.4% vs 82.4%. Adverse events leading to treatment discontinuation were reported in 2 patients in the blinatumomab group. Conclusions and Relevance: Among children with high-risk first-relapse B-ALL, treatment with 1 cycle of blinatumomab compared with standard intensive multidrug chemotherapy before allogeneic hematopoietic stem cell transplant resulted in an improved event-free survival at a median of 22.4 months of follow-up. Trial Registration: ClinicalTrials.gov Identifier: NCT02393859.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Transplante de Células-Tronco Hematopoéticas , Imunoterapia , Leucemia de Células B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Anticorpos Biespecíficos/efeitos adversos , Antineoplásicos/efeitos adversos , Criança , Pré-Escolar , Terapia Combinada , Quimioterapia de Consolidação/efeitos adversos , Intervalo Livre de Doença , Feminino , Seguimentos , Humanos , Lactente , Estimativa de Kaplan-Meier , Leucemia de Células B/mortalidade , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Recidiva , Fatores de Risco , Taxa de Sobrevida
19.
Sci Rep ; 11(1): 2801, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531590

RESUMO

Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Mielomonocítica Juvenil/genética , RNA Longo não Codificante/metabolismo , Adolescente , Antineoplásicos/uso terapêutico , Medula Óssea/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Técnicas de Silenciamento de Genes , Voluntários Saudáveis , Humanos , Lactente , Leucemia Mielomonocítica Juvenil/sangue , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/patologia , Leucócitos Mononucleares , Masculino , Cultura Primária de Células , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA-Seq , Células Tumorais Cultivadas
20.
Eur J Cancer ; 142: 112-122, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249395

RESUMO

INTRODUCTION: Extracranial rhabdoid tumours are rare, highly aggressive malignancies primarily affecting young children. The EU-RHAB registry was initiated in 2009 to prospectively collect data of rhabdoid tumour patients treated according to the EU-RHAB therapeutic framework. METHODS: We evaluated 100 patients recruited within EU-RHAB (2009-2018). Tumours and matching blood samples were examined for SMARCB1 mutations by sequencing and cytogenetics. RESULTS: A total of 70 patients presented with extracranial, extrarenal tumours (eMRT) and 30 with renal rhabdoid tumours (RTK). Nine patients demonstrated synchronous tumours. Distant metastases at diagnosis (M+) were present in 35% (35/100), localised disease (M0) with (LN+) and without (LN-) loco-regional lymph node involvement in 65% (65/100). SMARCB1 germline mutations (GLM) were detected in 21% (17/81 evaluable) of patients. The 5-year overall survival (OS) and event-free survival (EFS) rates were 45.8 ± 5.4% and 35.2 ± 5.1%, respectively. On univariate analyses, age at diagnosis (≥12 months), M0-stage, absence of synchronous tumours, absence of a GLM, gross total resection (GTR), radiotherapy and achieving a CR were significantly associated with favourable outcomes. In an adjusted multivariate model presence of a GLM, M+ and lack of a GTR were the strongest significant negative predictors of outcome. CONCLUSIONS: We suggest to stratify patients with localised disease (M0), GTR+ and without proof of a GLM (5-year OS 72.2 ± 9.9%) as 'standard risk'. Patients presenting with one of the features M+ and/or GTR- and/or GLM+ belong to a high risk group (5-year, OS 32.5 ± 6.2%). These patients need novel therapeutic strategies such as combinations of targeted agents with conventional chemotherapy or novel experimental approaches ideally within international phase I/II trials.


Assuntos
Tumor Rabdoide/epidemiologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...